Ab623318

""wo

)

AFML-TR-85-42 -

EXPERIMENTAL METHODS FOR DETERMINING SHEAR
MODULUS OF FIBER REINFORCED COMPOSITE MATERIALS

.....

J. M. HENNESSEY | S
JAMES M. WHITNEX.. e I
M. B. RILEY, CAPT, SAP CLEARINCHOWS
FOR PEDERAL ADNTUWPAND |0

‘ TECHNICAL 1NV WA TION -}
.._-..‘“”-{ Bluros tubs, {

. 0': ':

| 8.3000]8 075 Emas ]|
"I\ :-'».}:'4“'{:.-'!- _‘..;‘, ;»“-‘ - ) V/’ “ »‘
L“J\\J”:G‘ R SV IYTT 4

TECHNICAL REPORT AFML-TRG5:42 ~~ = eemed

SEPTEMBER 1063
] m D G )
prae T TN
A NOV 121355

N
TISIA €

AIR FORCE MATERIALS LABORATORY
RESEARCH AND TECHNOLOGY DIVISION
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERCON AIR FORCE BASE, omo\ L
\ RS




* AFML-TR-85-42

EXPERIMENTAL METHODS FOR DETERMINING SHEAR
MODULUS OF FIBER REINFORCED COMPOSITE MATERIALS

]. M. HENNESSEY
JAMES M. WHITNEY
M. B. RILEY, CAPT., USAF

e e - e v v



AFML-TR-65-42
FOREWORD

This report was prepared by the Plastios and Composites Branch, Nonmetallic Materials
Division and was initiated under Project No. 7340, “Nonmsetallic and Composite Materials,”
Task No, 734003 “Structural Plastics and Composites.” The work was administered under the
direction of the Air Force Materials Laboratory, Research and Technology Division, with
J. M. liennessey, James M. Whitney, and Capiain M. B, Riley as the project engineers.

This report covers work conducted during the period July, 1964 through December, 1964,

Manuscript released by the author February 1965 for publication as an RTD Technical
Report,

This technioal report has been reviewed and is approved.

Y A

H. S, SCHWARTZ

Plastic and Composites Branch
Nonmetallic Materials Division
Afr Force Materials Laboratory



AFML-TR-85-42
ABSTRACT

The shoar modulus of elasticity of a fiber reinforoed composite is an extremely important
mechanical property. The problem of experimentally determining appropriate shear modulus
for orthotropic materiala such as flber reinforoed composnites is not as simple and straight-
forwurd as in isotropic materials, and oare must be taksa both in the experimental methods
and deviation and use of the appropriate squations,

This report presenis four aoceptable methods for determining the sbear modulus of ortho=
tropic materials, Two methods are appropriste for determ in~plane shear modulus and
two others are for determining “bending® shoar modulus which is applicable in caloulating
buckling loads of laminsted plates and shells A discussion of each method precedes the method
of experimental determination, The Jerivation of all pertinent equations are presented in the
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SYMBOLS

Normal stress acting in the i direction

Shear stress acting on i-j plane

Normal shear strain in the i direction

Shear strain in the i-j plane

Tensile modulus

Displacement in the x direction for Cartesian coordinate system
Displacement in the y direction for Cartesian coordinate system
Displacement in the z direction for Cartesian coordinate system

Poisson's ratio
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INTRODUCTION

In determining the usefulness of a composite material as a structural member, it becomes
extremely important to know its behavior under shear stresses. This means that shear strength
and shear modulus must be determined., This report will be concerned with methods for

axparimentally messuring shear modulus,

H a flat plate is subjected to s pure shear stress 6 as shown in Figure 1, it will underge
a shear strain ¥, defined by the angle 8. Thus 7 = 6.

fo— detormed shope
/

Figure 1. Flat Plate Subjected to Shear Siress

In the case of a perfectly elastic body Hooke’s law tells us that T is directly proportional
to 7. The proportionality constant G isthe ahear iaodlus or as it is often called the “modulus
of rigidity.” Thus it is a measure of a body’s resistance tc deformation due to shear strzsses

being applied,
r S lowm TP Yoy

Laminatad structures present 2 rather unique situstion bscause G may taks on two distinct
values depending on the application of the shear stresses. If a larainate of n layers is subjected
to shear shress as shown in Figure 1, the deformation will ocour in the x-y plane and its
shear modulus may be determined from the shear modulus of each layer by using the foliowing
formula;

G. '.lgs' ‘li 1)

where G, and tl are the shear modulus and thickness respectively of each individual layer,

The total thiokness of the panel is denoted by t. G. denotes the in-plane shear modulus.

I a laminate is subjected to twisting, it will undergo shear deformation which {s three
dimensional, that is, outside the x-y plane. The rigidity or resistance to twisting of the
laminate now bedomes a function of the moment of inertia of the cross section just as the
stiffness of a beam: mubjected to bending is a function of the moment of inertia. Thus the
formula for G as a function of ihe properties in each individual layer becomes:
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n
Gl= 36
isl

where Ii is the moment of inertia of the cross section of each individual layer with respect to

the centroidsl axis of the laminate cross section and [ is the moment of inertia of the entire
cross section with respect to the same axis, G dénotes the *bending” shear modulus which is
applioable in the calculation of buckling loads of laminated plates and sheets, Thus we can
see from Equations 1 and 2 there is 2 numerical difference which ocours in the case of
laminates and not in the case of a one layer con posite with unidirectional fibers.

i b (2)

Two of the experimental methods reported will involve twisting (three dimensional defor-
matfon) of the test sample and will therefore determine the twisting modulus of rigidity.
Equations will be derived which will allow the modulus of rigidity, for in plane deformation,
to be caloculated from tensile modulus at 0°, 45°, and 80* and Poisson’s ratio, In~plane shear
tests are extremely ditficult to perform. The test method described in this report which
deals with in-plane shear modulus has limitaticna which will be discussed. The four methods
of shear modulus determination desocribed have all beenused with good results. The equations

used in the calculations have been completely derived for easy reference and appear in the
appendix,

it should be noted that all methods presented in this report determine shear modulus due
to panel shear as opposed to interlaminar shear. This is illustrated in Figure 2 for the case
of a laminated structure in the form of a flat plate. Panel shear involves shear modulus

V Y
= b X -z
342
== = -y

Figure 2, Laminated Flat Plate

relating shear stress to shear strain cccurring in the x-y plane. Interlaminar shear involves
shear modulus relating shear stress to shear strain in either the x-z or y-z plane.
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CALCULATIONS OF IN-PLANE
SHEAR MODULUS

The shear moditlus of an orthotropic system exhibiting Hookian behavior may be obtained
by knowing the moduli of elasticity along the natural axis, Poisson’s ratio and another elastic
modulue at some angle to one of the natural axis.

Mathematically, we may derive this equation by use of the stress-strain relations for
orthotropic plates. Then by use of transformation equations, we may derive equations for
streas related to a new axis. A similar derivation may be obtained for strain. Relating the
stress and strain equation an expression for shear modulus follows:

The equation, when 8 = 45 is:

(3)

Where:

Gy

E 45 modulus of Elasticity at 45° to the natural axis

in-plane shear modulus

ls:11 modulus of Elasticity along a natural axis
Big = Poisson’s Ratio - ratio of strain along the 1 axis to strain along the 2 axis

Egq = modulus of Elasticity noxrmal to E 11
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EXPERIMENTAL DETERMINATION OF IN-PLANE
SHEAR MODULUS

GENERAL DESCRIPTION
The in-plane shear modulus can be determined experimentally by deforming a sguare panal

into a rhombic shape as shown in Figure 3. This can be achieved by several methods. The
square panel can be forced dirently to assume a rhombic shape. The difficulty of this method
is keeping the panel flat during the test. Any distortion ocourring will lead to error. Another
method is the ploture frame test in which the specimen ilplloodintoanq:m:&tm?bn:umo
with pinned corners. The frame (specimen) is deformed into a rbombic shape as in
Figure 4. A third method is an edge flexure (that is, the specimen is oriented so that the
laminations are distributed through the width rather than through the thickness) test as shown
in Figure 5. Sinoe this is a two point load application, the portion of the beam between the
load points deflects as a function of bending only. But the defleciion sz measured Yrom the
support to the mid-span is additive, and therefore, the deflection due to shear can be de-
:erminod by measuring the deflection of botk the quarter and mid-points. Using the eguations
or deflection

Px’ ' iy L p
n:eei * 3o t ) OS2 €3 ¢
| o 3
et | Pl PO 3PL L L
"~ 9t tea " Sesmtiae a°*¢2 1)

and substituting distances to the measuring points, the in~plane shear modulus can be solved
with simultaneous eguations, The result is:

64® —
s aA(lly%_ Oy-%) (6)

Plastic laminates reinforoed with paraliel fiber or cloth layers are orthotropic, that is,
three mutuslly perpendicular axes of symmetry. As previously mentioned, the in-plane shear
modulus can be citained in the edgewise fisxure test.

OUTLINE OF TEST PROCEDURES

A bar of rectangular cross-section is tested in edgewise flexure as a simple beam, the
ber resting on two supports. The span should be at least ten times the depth of the specimen:.
The load is applied at the two quarter points L./4 and 3L/4.

Apparatus

(s) Testing Machine — a properly calibrsted testing machine which can he operated at
constant rates of crosshoad motion over the range indicated, and the error ir the load indicating
system shall not exceed : 1 percent. It shall be equipped with a deflection measuring device.
The stiffness of the testing machine sball be such that the total elastic deformation of the
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Figure 4. Picture Frame Teat
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'Figure 5. Quarter Point Edgewise Flexure
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system does not exceed 1 percent of the total deflection of the test specimen during test or
appropriate corrections shall be made. The load indicating mechenism shall be essentially
free from inertia lag at the crosshead rate used.

(t) Loading Nose and Supports — the loading nose and supports shall have cylindrical
surfaces. In order to avoid excessive indentation, the radius of the nose and supports shall be
at loast 3.2 mm (1/8 in} for all specimens.

Tost Specimens

The specimens may be out from sheets, plates, or molded shapes, or may be molded to the
desired finished dimensions.

For Materiale 1.6 mm (1/16 in) or Greater in Thickness — for edgewiase tests the width
of the specimen shall be the thickness of the sheet and the depth shall not exceed the width
(Notes 1 and 2*). For all tests the space shall be at least 10 times the depth of the beam. The
specimen shall bo long enough to allow for cverhanging on each end of at least 10 percent of
the span, but in no case less than 6.4 mm (1/4 in) on each end. Overhang shall be sufficient
to prevent the specimen from slipping through the supports.

Number of Test Specimens

() At least five specimens shall be tested for each sample in the case of isotropic ma-
terials or molded specimens.

() For each sample of anisotropic material in sheet form, at ieast five spacimens shall
be tested for each condition. Recommended conditions are flatwise and edgewise tests on
specimens cut in lengthwise and crosswise directions of the sheet. For purposes of this test,
Slengthe~” se® sghall designate the principle axis of anisotropy, and shall be interpreted to
mean tas direction of the sheet known to be the stronger in flexure. “Crosswise” shall be the
sheet direction known to be the weaksr ir flexure, and shall be at 90 degrees to the lengthwise
direction.

Conditioning Test Specimens

Unless otherwise indicated in Material Specifications, sll test specimens shall be con-
ditioned in accordance with Procsdire A described in Section 4(s) of the Methods of Condjtion~
ing Plastics and Electrical Insulating Matorials for Testing (ASTM Designation; D 618)*, and
toltemdnn be conducted in the Standard Laboratory Atmosphere as defined in the same
specification,

L]

*Note 1 — Whenever possible, the original surfaces of the sheet shall be unaltersd. However,
where machine limitations msake i impossible to follow the above criterion on the unaltered
sheet, both surfaces shall be machinedto the desired dimensions and the locaticn of the speci-
mens with reference to the total thickness shall be noted. The values obtained on specimens
with machined surfsces may differ from those obtained on specimens with original surfaces.
Consequently, any specifications for flemiral properties on the thicker sheets must state
whether the original surfaces are to be retained or not.

L

*Note 2 — Edgewise tests are not applicable for sheets that are so thin that specimens
nieeting these requirements cannot be cut. If specimen dspth exceeds the width, buckling
may ogour.
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Prooedure

() Use an untested specimen for each measurement, Measure the width ar.d thickness
of the specimen to the nearest 0.03 mm (0.001 in,) at the center of the span, For specimens

less than 2,54 mm (0.100 in) in thickness, measure the thickness to the nearest 0.003 mm
{0.0001 in).

() Determine the span to be used as described in Section 5. After the span is set,
measure the actual span length to the nearest 1 percent,

(c) Where Tabie 1 is used, set the machins for the specific rate of crosshead motion, or
4S8 near as possibls to it

(d Align the loading nose and supports so that the axes of the cylindrical surfaces are
parallel and the loading nose is midway between the supports. This parallelism may be
checked by means of a plate with parallel grooves into which the loading nose and supports
will fit when properly aligned, Center the specimen on the supports, with the long axis of
the specimen perpendjcular to the loading noses and supports,

(®) Apply the load to the specimen at the specified crosshead rate, and take simultaneous
load-deflection data. Deflection shall be measured either by gages under the specimen in
contact with it at the center of the span, and at one quarter point, the gages being mounted
stationary relative toc the specimen support, or by measurement of the motion of the loading
nose relative to the supports with a gage at mid-span, In either case, appropriate corrections
for indentation in the specimens and deflections in the weighing system of the machine shall
be made, Load-defiection curves may be plotted to determine shear modulus,

TABLE 1

SUGGESTED DIMENSIONS FOR TEST SPECIMENS

Nominal Width of Length of Test Span, Rate of Cross~
Specimen Specimen, Specimen, mm (in.) head Moticn
Thickness, mm (in.) mm (in,) mm (in,) per

mm (in.) min,

0.8 (1/32) 25.4 (1) 50.8 (2) 15.9 (5/8) 0.51 (0, 02)

1.6 (1/16) 25.4 (1) 50. 8 (2) 25,4 (1) 0.76 (0, 03)

2.4 (3/%2) 25.4 (1) 63.5 (21/2) 38.1 (11/2) 1.02 (0. 04)

3.2(1/8) 25,4 (1) 76.2 (3) 50.8 (2) 1. 27 (0. 05)

4.8 (3/16) 12,7 (1/2) 102 (4) 76.2 (3) 2. 03 (0. 08)

6.4 (1/4) 12.7 (1/2) 127 (5) 102 (4) 2.79 (0.11)

9.6 (3/8) 12.7 (1/2) 191 (7 1/2) 152 (6) 4.06 (0. 16)
12.7 (1/2) 12,7 (1/2) 254 (10) 203 (8) 5.33 (0.21)
19.1 (3/4) 19.1 (3/4) 381 (15) 305 (12) 8.13 {0. 32)
25.4 (1) 25.4 (1) 495 (191/2) 406 (16) 10. 92 (0. 43)
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Retests

Values for properties of shear modulus shall not be caloulated for any specimen that
breaks or buckles at some obvicus, fortuitous flaw, unlese such flaws constitute a varishle
being studied. Reteste shall be made for any specimens on which values are not oaloulated,

Caloulation of Shear Modulus

A beam is tested 'n edgewise flexire as a simple beam suipported at two points and loaded
st the quarter points. The shear modulus in the plane of the panel can be calculated with the
foliowing equation.

. 9PL
s TeA(ily -8y ) )
[

where:
G = in-plane shear modulus
Yi./4 ™ deflection st the quarter point in millimeters (inches)
Y12 ™ duflection st mid-span

Note that this equation is based on the difference between two deflections, Thus extreme
care must bo exercised in making these measuremente or the results will not be acourate.

A = bd, the cross sectional area in square centimeters (square inches)

P = load at a given point on the load deflectien ourve, in kilograms (pounds)

L = span, in centimeters (inches)

b = width of beam teated, in centimoters (inches) and

d = depth of beam tested, in centimeters (inches)

Arithmetic Mean — for each series of tests, the arithmet.c mean of all values obtained

shall be calculated to three significant figures and reported as the “average value” for the
partioular property in question.

Standard Devistion — the standard deviation (estimated) shall be caloulated as follows and
reported to two significant figures:

s =sz.n :—.ll“ @)
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where:

S = estimsatad standard deviation

X = walue of single observation

X =

numbar of chaarvations
arithmetic mean of the set of observations

Report — the report shall include the following

@)

Complete identification of the material tested, including type, source, manufacturer’s

code number, form, principal dimensions, and previcus history,

@
)
4
)
(6)
M
®
L
(10)

Directions of cutting and loading specimens,

Conditionirg procedure,

Depth and width of the specimen,

Span length,

Spen to deptk ratio,

Radius of supports and loading noss,

Rats of crosshead motion in millimeters (inches) per minute,
Maximum strain in the outer fiber of the specimen,

Shear moduius, average and standard deviation.

The above outline is based on ASTM Designation: D 790-83, *Standard Method of Test for
Flarural Properties of Plastios,® and Military Standard 401A, “Sandwich Constructions and
Core Materials; Gensral Test Methods.”
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FOUR POINT LOADING TEST

GENERAL DESCRIPTION

The saddle test or four point loading is useful in determining one of the three possible
shear moduli, where with the torsion test of rectangular beams, the effects of two of the
thres modill are combined, In the smddie iest, the shear moduius, G, is measured by imposing
a pure twisting moment on a square plate, This {8 acoompiished by plrcing four equal forces
at the corners of the square plate, The forces are perpendicular to the plate with those forces
at the first and third (diagonal) corners being upward and the other two forces downward. The
corner loads force the square plate to assume a hyperbolic paraboloid or a saddle shaped
surface. The sections of the surface made hy vertical planes through the diagonals are two
identical parabolas, cne conoave upward and the other concave downward, with the vertices
at the center of the plate.

The shear modulus, G, can be computed from the ratio of the imposed loads and the vertical
deflections of the plate with respect to the center of the plate under test. The derivation of
the following equation is found in A ppendix III,

3P
- (9)
wt

6 =

where:
P = the load applied at each corner (lb

t

plate thickness (in)

w = deflection of a point (x,y) on the diagonal with respect to the center of the plate (in)

(x,y) = coordinates of the point on the diagonal (in) (See Figure 16)

G

shear modailus with respect to the plane of the plate (psi)
The equation bscomes:

3put

G =
_g-'-;' (10)

where:
u = the diagonal distance from the center to point (x,y)
To insure correct test results the following steps are necessary:
(1} Never exceed one-half the proportional limit of the material,

() It is recommended not to let u exoceed half the distance from the center to the corner
of the plate, thus avoiding any localized loading conditions at the corners of the plate.

10



AFML-TR-65-42

(3) Since both the testing machine and the indicated deflection are twice the actual load at
exch corner and the deflections of one point with respect to the center, the indicated values may
be substituted for P and w.

When possible, fairly thick specimens should be used in order to avoid effects associated
with initial curvature. The side to thickness ratio should be maintained between 25:1 and 50:1.
If any initial curvature is present, it can be minimized by obtaining two load-deflection curves,
one with two given corners deflacted downward and the second curve with these corners
defle.ted upward, If there is a large difference in the two calculated shear modull because of
a deflection which is too large or lack of symmetry in their lay-up, the average of the moduli
ocannot be acoepted as a good value of the actual shear modulus, In order to apply this test to
orthotropic materials, the orthotropic axis must be parallel to the sides of the specimen
(See Appendix IN).

If the plate is deflecting according to theory, then lines drawn on the faces of the square
test epecimen, parallel to the edges, must remain straight during the experiment, A straight
edge may be used to determine whether gross departurss from the theoretical assumptions
exist in any given plate. Also, the deflections of the four gage points with respect to the center
should be approximately equal,

The shear modulus fixture {s shown in Figure 6.

As mentioned before, localized loading effects may exist at the corners. To avoid this, the
sharp loading points found in the fixture (Reference 1) may be replaced with roller bearings
(miorometer ball attachments), The use of roller bearings at the loading points allows the
plate to shift its points of contact as deflection ocours. The rounded surface also distributes
force hetter than a pointed support which may indent the test plate. This indentation may
cause separation of the fibars of a reinforced specimen as the load increases.

In order to eliminate reader error when recordingload verses deflection, the dial indicator
may be replaced with a microformer which allowsuse of the x-y recorder. This newer method
may be necessary when testing low modulus materials, where the rate of deflection to load
approaches the 0.3" /min crosshead speed.

OUTLINE OF EXPERIMENTAL PROCEDURES

Direction of Grain — the orthotropic axis of the laminate shall be parallel and perpendicular
to the adges of the test specimen,

Test Specimen — the test specimen shall be square, with the thickness equal to the thickness
of the material and the length and width not less than 25 nor more than 40 timee the thickness.
The thickness, length, and width of each specimen shall be measured to an accuracy of not less
than + 0.3 percent, Care shall be taken to avoid obtaining test specimens with initial curvature.

Loading Procedure — the tast specimen shall be supported on rounded supports having a
radius of ocurvature not greater than cne~half in, (6 mm) on opposite ends of a plate diagonal,
and loaded in a simiiar manner on the opposite ends of the other diagonal. The loading and
supporting frame shall be rigid, Figure 6 indicates the method of test and shows details of the
plate shear on four point loading apparatus, The load shall be applied with a continuous and
uniform motion of the plate corners to aveid the load and reaction effeots. The plate shall not
be streased beyond its elastic range, and inorements of load shall be chosen so that not less
than 12 and preferable 15 loand-deformation readings are taken.

To eliminate the effects of light initial curvature, two sets of data shall be obtained, the
second set with the panel rotated 90 degrees about an axis through the center of the plate and

11
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perpendicular to the plane of the plies, The two results shall be averaged to obtain the shoar
movable head at a rate of .003 times the length of the plate in inches (cm), expressed in
inches (om) per minuie, with a permiesibie variation of + 25 percent.

Deformation Measurements — the deformation shall be measured to the nearest 0,001 in.
(0,02 mm) at two points on each diagonal equidistant from the center of the plate, These
measurements preferably shall be made at the quarter point of the diagonals, and {f other
peints than these are chosen, care shall be taken to avoid looation near the modulue for the
plate, A satisfactory arrangement for measuring relative deformationis indicated in Figure 5.

Caloulation ~ the shearing modulus of elasticity shall be calculated as follows;
[}
P
¢ = AP
ttw

where:
G = shearing modulua in pc 'nds per square inch (kg per sq. cm)

P = load applied by the test machine to the panel. (This lnad is twice that applied to each
corner) in pounds (kg

t = thiokness of the plate in inches, (cm)

w = deflection as read on the dial gage (twicethe deflection relative to the center) in inches
{(cm) (Note 3*)

u = distance from the center of the panel to the point where the defiection is measured in
inches (om)

The above is based cn ASTM Standards for the determination of plate shear,

L -
*Note 3 — The average values of panel w are generally taksn from the slope of & previously
plotted load~deflection curve,

13
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TORSION TEST

GENERAL DESCRIPTION

when a spesimen is subjecied i0o torsion, & ooiiple normal to the axis of the msmbsr is
developed in every cross-section, The formulas for circular shafts of consiant cross-sections
are;

(1)

=1t
G =3 (12)

These equations are based on the followingassumptions: The resultant of external forces ie
a couple in the plane perpendicularto the axis of the shaft and these forces are in equilibrium,
The specimen is of constant cross-section and during the test the axis remains straight.
Planes normal to the axis remsin plane and the diameter in any plane remains straight, that
is, no warping ocours durin; - the test,

The material must be homogeneous and isotropic, The stress must not exceed the propor-
tional limit. while Equations (11) and (12) areused to obtain the torsional modulue of rupture,
this value is not the irue stress but rather a measurs of the relative strengths of varioue
materials,

The ordinary torsion formulas do not apply to a shaft having a cross~seoction other than
circular. There are several disacvantages associated with noncircular cross-sections. St.
Venant found thit plane sscotions do not remain plane when subjected to torsion, As previously
mentioned in the saddle shear test, three different principal shearing moduli are possible,
These shearing stresses correspond to the shearing strains of the three planes of elastic
symmetry. In the torsion teet of non-circular cromse-mectionsg; these moduli have the combinad
effect of two of the three moduli.Inorder to obtain either modulus, it ie necedsary to combine
results of tests on two or more specimans having different dimensicas.

When testing rectangulsr crose-sections the above disadvantages can be eliminated through
useé of thin cross-reoticns, This will be shown in the appendix, As can be seen in the following
diagram of the elemental biock, the maximum shear stress in a rectangular bar is at the
center of the long side, that is at a point on the wsurlace nearest the longitudinal axis (axis of
twiat), St, Venant’s paradox states if two bars of the same elastic material, lut having different
non-oircular cross-sections, the one with a lower polar moment of inertiz has the greater
torsional stiffness snd strength, provided there exists no concave surfaces in efther bar,
No shesring stresses can exist on the outsic . surfaces; therefore only the faces of the block
elements not parallel to a surface are subjected to shearing stresses. Since no longitudinul
atresees are present in block A, no counteracting stressee exist at the front and back faces,
It is now apparent that the shearing stresses vary from a maximum at the center of the laces
to zero at the corners, Equations (11) and (12) are modified in Appendix 1V to aliow for this
parabolic stress pattern.

14
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Assumed
Varation

IN Ty,

Figure 7. Torsion Member with Elemental Blocks

OUTLINE OF EXPERIMENTAL PROCEDURES

This method describes a procedure for determining the stiffness charscteristics of
laminated plastics by direct measurement of the apparent modulua of rigidity.

Significance — the property actually measured by this methcd is the apparent modulus of
rigidity, G, sometimes called the appareut shear modulus of elasticity. It is important to note
that this property isnot the same as the modulus of elasticity, E, measured in tension, flexure,
or compression, The measured modulus of rigidity is termed “apparent” since it is the value
obtained by measuring the angular deflection ocourring when the specimen is subjected to an
appiied torque. Since the specimen may bhe deflected beyond its elastic limit the calculated
value may not represent the true modulus of rigidity within the elastic 1imit of the material,
In addition, the value cbtained by this method will also be affected by the creep characteristics
of the material, since the time of load application is arbitrarily fixed.

Apparatus

(a) The testing machine must be capable of exerting a torque of appreximately 0,12 to
1.2 Kg-cm (0.1 to 1.0 lb~in ) on a test specimen with a span of 38.1 mm (1.6 in ). A schematic
diagram of a machine suitabie for this test is shown in Figure 8. The amount of torque may
be varied to suit the stiffnens of the tesi specimen, Different weights should be available for
this purpose. The actusl amount of torque being applied by any given combination of weights,
torque wheel radii, and shaft bearings shall be determiined by calibration,

() Timer — a timer acourate to 0.1 sec,

() Micrometer — a dead-weight dial type micrometer capeble of measuring thicknessss
accurately to 0.0025 mm (0.0001 in,),

15



AFML-TR-65-42

TORQUE- PULLEY
SCALE GRADUATED
0-360°

>

LOAD
PULLEY
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LOAD CORD
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TEST SPECIMEN
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Figure 8. Torsion Tester
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Test Specimens

{a} Test specimens shall he of the shape and dimensions shown in Figure

Q

Y. L NSy IGAY
ocut from compression-molded sheets. Care shall be taken to ensure that the test specimens
are orthotropic with respeot to the natural axis. A punch-and-jig unit is a useful tool for
punching the mounting holes in the specimen,

Ths-- TS 14 h“e

(b) The thickness of cloth and angled fiber reinforced specimens shall not exceed one-
tenth the width. For unwoven unidirectional fiber reinforced composites Equations 104 and
accompanying table given in Appendix IV is applicable,

(c) Duplicate specimens of each material shall be tected.

50.8 ¢ 0.025mm 4.5 20.025mm
P ( * M
¢ (2.0 t 0.001") | r_ (0.250 ¢ 0.001")

I | 63.5 $0.025mm @J._I\ 3. 734 mm diam,
S 20,001) '

(C.147")

(0.250 to.001")

Figure 9. Test Specimen

Procedure
(2) Measure the width and thickness of the specimen to three significant figures.

~ (b) Carefully mount the specimen in the apparatus. Adjust the clamps so there is no slack
or tension in the specimen.

(o) Release the torque pulley, After 5 seconds note the angular deflection of the pulley and
return the torque pulley to its initiai position. If the reading thus obtained does not fall within
the range of 10 and 100 degrees of arc, vary the applied torque in guch a way as to produce
such a reading. (Note 4%)

(d After each suitabie reading i obtained, repeat tha steps indicsted in paragraph (c).

SRS

*Note 4 — In order to obtain measured values of apparent modulus of rigidity, G, that are
comparable to the true value of G it is desirabls that measurements be made within the
e.astic limit of the material being tested. Therefore, torques shall be chosen that will cause
detisotions that are as small as it is practical to measure acourately on the machine being
used,

17
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Caloulation ,
(a) Caloulate the apparent modulus of rigidity, G, as follows

{i3)

where;
T = Torque
w = Width (w210t)
t = Thickness
® = Angle of twist

The above tests are besed on ASTM Designation: D 1043-61T “Tentative Method of Test for
Non-Rigid Plastics as & Funotion of Temperature by Means of a Torsion Test.”

18
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APPENDIX |

DERIVATION OF ORTHOTROPIC SHEAR MODULUS EQUATION

In order to derive an equation for ths shear modulis of a two dimensional orthotropic
material as a function of Young’s modulus of elasticity and Poisson’s Ratio, we start by
recalling the generalized equations of Hookian behavior for two dimensional anisotropy.

€ = 9, Gt 9, Tyt %3 Tay

an "
Cyy = 9 Ty ¥ 9,0, F a,T,,
~ = 0 0 + ¢ 0o + a. T

yxy 1% xn 23 yy 33 ny

(1)

(15)

(16)

If we consider an orthotropic material whose elastic constants, parallel and perpendicular
to the natural axes, may be measured, then, we may obtain stress-strain relations for

orthotropic plates.

§y

\ ZP

6
i | -x

Figure 10. Axis System for Composite

In the systam shown (Figure 10), the equations become:

Jie
Ta” Ge
gy, o O 9, Fiz Cpp
€ = =3 o T2 % or 2L
" E, Epp €, €

. % Hi2 9%
" En €y

21
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The laws of elasticity are known in directions 1 and 2 but not in the x and y direction. We
desire to know the stresses as referred to a set of axes x and y which make an angle 8 with
the natural axes, 1 and 2. Transformation eguatione for streszs and strain may be derived

from purely geometrical considerations for this new axis,
The following anslysis derives the needed equations:

Conajder a two-idumension:]l element (Figure 11) subjected to a general stress field,

n
I 3
~
~

Figure 11. Two-Dimensional Element

If the streas distribuiion is known with respect to a given coordinate axis, then it can be
determined with respect to any other coordinate axis by means of transformation equations.

S0 then consider an element of unit thickness with one face of unit lengtk perpendicular to

the 1 axis. All elements of a body in equilibrium are themselves in equilibrium if all external
and internal forces are considered.

Figure 12, Stressed Orientation for Element

22
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Summing forces in the 1 direction (Figure 12):

g, — oy ,con8cosf - 1, 3inGcosf -

Y

7, sinGsin 6 - Ty cosOsinfd = 0

or

o, = a'“cos'G + o, sin®@ + 2 Ty Sint cos 8

Similarly, considering an element with face perpendicular to the 2 axis:

Figure 13. Stressed Orientation

Summung forces in the 2 direction (Figure 13):

Tpe = Ty 3in8 88 + Tyy cosBsinb

~ g cos8cos8 + 1, 3infcos 8 =0

y
or

Gpe = Oy 8In"8 + 0, c08®8 - 2 1, sinBcos 8

Yy Txy

Then summing forces on either element:

T, + sinfcosf - r, cosOcosf

%xx y

- o, cosfsinf + Ty sin@sind = 0

23
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N Te = Oyy sinfcosd - o, sinBcosf + f"(éiﬁ.g—iiﬁ.g} iz2j
Summarily,
Gy * Oy €080 + oy sin®8 + 27, sinfcosd (23)
Oa * Oy sin®8 + Oyy cos*8 -2 Tyy sinfcosf (24)
Ta = Oyysinfcos8 - oy sinfeosh + 7 ( cos*8 -sin*8) (25)

If we subject our system to & stress, ﬂn, then from Equations 14, 15, and 1€, we may write

Cx * 9 Oyx (26)
Cyy* O Oyy (27}
Yay® % % (28)
Using Equation 23;
Cx ® 9y Ty
where;
[ ]
(] g - e—
e el (29)
8o that
Ty
Eu * € (30)

We have derived equations for stress related to a new axis, we now need to obtain an
equation for strain related to the new axis.

24
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To set up strain equations at a point in & deformed body, consider a small length r along
the 1 axis.

AY

Figure 14. Axis for Strained Orientation

The projections of this length on the x and y axis are:
Ox = rcos 8 {31)

Ay = rsn b (32)

If you and v are displacements of the point A, the displacements of the point B can se
expressed:

u=u+-g-';'-—A;+g;‘ by

{33}

"'*3;"6+3;“A' (34)

After deformation, the coordinates of point B, which were originaliy x and y become;

Ax +v' - u= Ax + -g: Ax + Oy Ay (35)
Ay +v'-v= Ay + Ov Ax + — O 4y (36)

Ox dy

The new length of r after elongation becomes r + €r, therefore:

(r+(r)‘=(Ax+mQV—~ Ax + g"
dv
+ (A _— A -—
(!*ax ”a ay) (37)

25
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Dividing by r and substituting for x and y

(1+e¢)= [cose(l + g: ) + sinf %]z

2
)+sin9(l+ g;)

du_ Ou  dv v
Ox Jdy Ox 0y

+ cose( g:

Since € and derivatives

are small quantities, all orders higher than the first may be neglected.

Expand and neglect higher order termse:

| +2¢€ = cos®@ + 2 c0s®8 -9 4+ 2 5inB cos§ -2
Ox dy

+ 3in?8 + 2 sin®0 9 4 2 5inB cos§ L
dy Ox

Then the unit strain through a unit area along AB becomes:

€, = cos 8 g: + sinf cosb 3_; + s;nt6 -%

§

» v
L4

+ sinfcos 8 ==

Ox

And since by the classical strain-displacement relations:

_ Ou
€xx ~ ox
« = Ov
Y~ dy
s Qv 4, Bu_
Ry Ox Oy

then

»
"

2
€,, CO8 8 + €

y sinze + 7xy sinacose

and conversely,

26
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€x = €, c0s’0 + ¢, sin®8 + 3, sinBcosb (43)
Then using Equation 30
Bux Oyx
and substituting Equation 43
P ]
5 T, [1" cos' 8 + ¢, sin 8 + ¥ smecooe]
and from Equation 43
c o o
. ("'u Hia Ta )cou'G + ( ;g F'i; u) sin8
Exx %% |\ Ei E, 22 "
T
+ % ginBcosh
Gre
By using Eqations 17, 18, and 189,
| ! cos*8 ( 2 )
—_ = — cos 8 - o, sin g
Exx  Tux [ al
+ sin6 ( cr" sin*8 Hpc08°0 70'”cos'9sin’97
E, Gyp
| cos'6 2, 9in"Gcosd  sin*6 cos'8sin*d
— = - + +
Exx Ey E, Epe Gyy ta4l
Solving for G,, ylelds:
G cos *0sin’@
" i sin'8 !
E;;- —i_E_::- 3 cos'8-- 2 p“ﬁn'Qcos'G) 145}
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When 8 = 45°

28
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APPENDIX I

CALCULATION OF SHEAR MODULUS OF A FIBER
REINFORCED COMPOSITE FROM THE DEFLECTION
OF A QUARTER~-POINT SYMMETRICALLY LOADED

BEAM WITH A RECTANGULAR CROSS~-SECTION

The effect of shearing force on the deflection of a beam lLas been discussed by Timoshenko
(Reference 11), He shows that the slope of the deflection curve due to shear is equal to the

shearing strain, Thus
dy, . Txyly=0 . va (47)
dx G IWG

where:
Yg = deflection of beam due to shear
V = shear force
Q = {first moment of area about the neutral axis
1 = moment of inertia

w = width of the beam at y = 0 (this is assuming the neutral axis is located at y = 0),

Assuming small deflections, the equation for curvature of the deflected curve considering
both shear and bending is

L d'y d'y
y ] b ___M Q dav
== " + d‘t z €l <+ W ox (48)

a &

dx

where:
Yp ™ deflection due to bending as ohtained from the Euler-Bernoulli law,

Looking at Figure 15 we see a simply supported fiber reinforced beam loaded with a force
Patx = L/4 and at x = 3L/4. Since only the normal stress 0, &nd the shear stress Ty WO

considered, simple heax: theory will still apply to the case of an orthotropic material.

For a beam of rectangulser cross-soction

2
wd . wd
Q = s ] l - '2

where d = depth of the beam. Equation 47 becomes
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Y% .3 N
dx 2 AG

whera A, of course, is the cross-section area. Using Equation 48 the eguation for curvature
will be

2
dy,_M . 3 4dvV
nt €Y 246 o (49)

Using this equation for the section 0 = x <L./4 along withthe shear and moment diagram we have

S _Px 3 P
dxt El  2AG dx

dy, Px' _ 3P
z - + +
ax 26l T 286 &
=-.'_’.’.‘l+ SPX pex +c
Y 6EI | 2AG ]
at x 2 0, y'=0, o’ 6'39
_ Px’ 3Px
%% eer * zac T
RO
—E

—ery
i
>

sheor

PL
nd

Figure 15. Simply Supported Fiber Reinforced Composite Beam with Quarter-Point
Symmetric Loading Showing Shear and Moment Diagram
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Again applying Equation 48 to the section L/4 <x 51L/2 using the shear and moment diagram
we have

L
P 4El
dy, PLx
ax -~ "4E1 TS
L 9
g x = 2! “dx 0
2
- PL_
* ¢ BEl
—di =—-—PH.+ Ll:'-
ax aEl | BEI

Integrating again
s - -Etf-.{» —:—EL;-'- + C,

To determine the constantsc, andc, we look at the slope and deflection at the point x = L/4,
The slope due to bending in the first section must be equal to the slope due to bending in the

second saction, Thus
dy, 9y,
-2 ) ()

p®, 3p _3p . __ Pt P
— et 2a6 " 246 T4 ° " eEl t TBEI
]
3L
% €= 3ZET
px’ | !
W® " eEl *s(zAs*S‘iﬁ)P‘ (S0
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Mutt aleo have continuity of deflection at x = -2 Thus

4
¥ E Y
(% PL P ! 3 L}
-—_+_+_LL=-_EL._+_L'_+C
384ET |~ SAG  128El 128E1 32E1 .
o cx— PL_, 3PL (51)
e < S84El ¥ 8AG
. PLx® PL'x  PL'  o3pL
% 8El 8El 384E1' BAG
The deflections at x --}mdx --}ue
P} 3PL
{3’ J8E1 8AG
ned 3PL
N + 8Ac
T

Multiplying the first of these equations by 11/8 and subtracting the second from it will yield

1
8 |1
4

, |- 28L
L |” “e4aG
4
(52)
z SPL

aa(u!}— a!%}
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APPENDIX il

DERIVATION OF PLATE EQUATION FOR
SADDLE SHEAR TEST

According to St. Venant’s principle, a square plate loaded with a constant twisting moment
along its edges is statically equivalont to the loading shown in Figure 16, provided the thick-
ness of the plste is amall in comparisonto the other dimensions. For a more detailed justifica-

tion of this statement see Reference 12,

Y

2 canadlb §

Figure 16. Orthotropic Plate Loaded at Corners

Gyx® —%-x (O’“- Fxy 'a'”)

“' T (o~ Py %

-,

Let w = deflection in z direction of any point point (x,y) in the plane of the plate,

2

M, = —D.(%:% + p."-g-:?!'-)

33
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3 2!
Mvv = _Gc_'_ Y wa (58)
~7 - 122 173
where;
M

x - moment per unit length along the edge parallel to the y~axis

My = moment per unit length along the edge parallel to the x-axis.

Mxy = twisting moment per unit length distributed along the edges.

3 3
E,! E ¢

D = 1D, =
! lall-,;:,] ' lzil-p;,'

In this particular problem

Using Equation 52
6M, a*
en’ Jdxdy
Integrating with respect to x
10'__ = su' = 4+ g.{.,a‘
dy Gt* J

Integrating with respect to y

w=-——-—xy+f(’+!(’ (59)

from Equation 59

L ufy)
2= w)
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Using cquations 5¢ and 57 with the conditions M, = My = 0 will yleld
“wi 1Y | v A
f,'xl + p“ ' ly, =0
n
f.l,’ + Hyx f‘l x) =0
These equations must be 0 for all values of x ard A

% f."(x) = ¢, = constant (60)

f‘"(y) z ¢,* constant (61)

1, l) = 0
. r . e2)
L " X * = C' X + C.
f, v)=0
\ . (63)
o L Y)Y T

Using Equations 62 and 63 in Equation 68 we have

&M, ¢
w:-—(;—'-,—xy+c'x*c.y+c7

whers . C, s = o + S,

Other conditions
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'- w ‘0.0, = o ..‘ c-' = o

2. h 50 o C' =0
Ox
xey=z0
3, _a.!. = 0 o C. 0
dy
y=y=0
Now
&M,
w =z Ry
Gt

Replacing M1 by the statically equivalent load shown in Figure 16 we have
w e —2E_ (64)
Gt
whers P = 2 M,

If we lot u = the distance from the origin along a diagonal of the plate:

3Pu (65)

*Note 6§ — The orthotropic stress-strain relationships are good only when the x and y axis

are both principle axis of symmetry of the orthotropic material. Otherwise Equations 64 and
65 will not work.
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APPENDIX IV

TORSJON OF AN ORTHOTROPIC BAR

The St. Venant semi-inverse approach will be used.

Figure 17, Bar of Arbitrary Cross Section Subjected to Torsion

Assume

Oxx™ Oyy = Oz = Ty = O

(66)

Now applying orthotropic stress-strain relationships (assuming x - y axis to be orthotropic

axis of material)
| - "
T T, Oax T Py Oy T P )

! - .
€9y * E,, (%yy = Fyx Tax — Myz 922 ),

|
€ " 'E;z("'zz ~ Pzx %% Hzy Ty );

. A . i
Ny * J@"" Tay ' Y9z * e’:n "Ry *- Gu'uz

37
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we see that
.
Cx ® Sy T 6 = Ny = O
cue-gi'Lzo—--u = fly,z)
€ s'-al=o-—-v=fu z)
yy = dy £ » (68)
¢u=-g-g-=o——'w = tix,y)
Ju dv a1, Oty
s MU BN Z ot ——
7;)! dy dx =0 dy Ox )

Looking at a cross-section of a bar of arbitrary cross-section we can determine the
displacements

——fe %

Figure 18. Cross-Section of Bar Having an Arbitrary Shape and Showing Dispiacements

F is a point at an argle 8 to the x axis and & distance r from the origin, P’ is the same point
after being rotated through an angle ezwhere # 1s the angular twist per unit length, Assuming

the displacements are small we have from Figure 18

[
1}

(69)

<
(]]

- rfz siny = - yOz
rfz cosy = x8z

In order to solve an elasticity problem it is necessary to satisfy equilibrium, compatibility,
ard houndary conditions.
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Looking first at the equilihrium equations

30y, . 9Ty + Ity ) ]
Ox dy Oz ‘
ot do, dr,
oo, X > (70)
ox dy .
ot,, . arn+ do,, )
Ox dy dz ]
Equations 70 will he satisfied provided
ar :
..,5_“. =0 — T,,= 9,ix,y) A7)
z . n
.drn
3 = Q —s Yy = g‘(l,y’ (72)
z ;
or or
d"+ a”:o (73)
X y

By using the stress strain relationships, Equations 67, and the strain displacement relation-
ships, Equations 68, 71 and 72 are aatisfied exactly. Since u and v are continuous functions

they will satisfy compatibilit

v
mamawy o

In this spproach a stress function ¢ (x,y) 1s used which will satisfy equilibrium. If we pick

¢ =such that

r.= 9%
- 9%
vz dx J

(74)

Equation 73 will be satisfied and thus the equilibrium conditions met.

Now locking at the compatibil ty equationa

a*ty,

y ax

F. P

d'¢yy

dxdy

dyt

39
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a* e
7& i d “yy . 63;5 76)
dyd: ot o’
0.7” a'cn d'«n
R—F S + ™
Oxdz a:t oxt (
s |
2 i.:ﬁ 2 -f!...(- 07'1 + 07" + 07;,) (78)
Gy dz ox Ox dy dz
s
2 0411' 2 ( 07‘”_07 a>;) 79
Ox 0z dy ox dy 0z
at
2 e, 3 ( 07,: . ,, _ 07‘!) ®0!
£x 0y Oz Ox dy dz

it can be seen that since # isnot a function of x, Equations 76, 76, 77, and 80 wm be satisfied.
Using Equations 7& and 79 along with stress strain relationships we have -

ot ot

2 ! x2 z\,
(e o - ‘é;,'??") o
R TR . T W
: ay(en ax 6, 9y )

Using ¢ 1n thews relationships ylelds
..én(L a ¢ ! a.¢ ) s Q
ox ot Gy oyt

a(s % . 0'4’)”0

G, Ox* 6,y &t
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Thus

e 2
; :? + ; 3 f = f (z) or a constant
x xx 9

yz

Using the displacements and the stress-strain relationships we have

L Gﬂ('gf' + 19)

T S %f"" ’9)

or

Q. . X _ 48

dy Gyy

-%:— = T“ + ’8
xz

'w _ 1 AT +6

dxdy G, Oy

' _ 1 dvy, _8

drdy G, dox

Subtracting Equation 84 from Equaiion 83

g 3
01 ;ut‘.e' afg_ze

a 27

or

Y e
Cxz 6¢+ &t"“ua

Gy ot dy

4]

(81)

(82)

(83)

(84)

(85)
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To obtain boundary conditions we look at the outside of a cross-section as follows.

sin@=— 20

ay
Js

cosf=

Figure 19. Cross Section of Bar Showing Boundary Forces

JF=0z1_cos@ +1_sinf@ —<
n xz yz nz

but T 2 = O on the boundery

n
24 )
or d¢
o "0

Take ¢ = o for solid cross-section, thus

¢ = O on boundary

Now to find expression for torgue

yz

- Tyy

Figure 20. Cross Section Showing Stressed Element

dT = —y Tox dA + x T, dA

zy
T=-—f(y—g;?;+%x)dk
Area
¢ ¢
AR A A




AFML-TR-66~42

Green’s Theorem in a plane can be used on the first integral. This theorem states

(Reference 13)
ff(%?_.,.g_;’_) dx dy =f Pdx + 'Qdy

Areo = curve
Let
SRt
Then
Q=x¢ ; P=—-yé
Now

ff (! d¢ + ¢ +’-‘vg—¢;-+ ¢) dxdy ‘f“¥¢¢l+1¢dy

Area 9y X Boundary

IR R AUE L
Boundory

From Figure 20, the normal force at the boundary

dy (x component of a unit vector in
ds  ~ ot 8 - e in the normal direction along the
boundary)
- %. z sinf = ny (y component of same unit vector)

Now

Ts-f¢ (Xn‘+ yn')ds+2ff¢dA
beundary Aigr

The {irst integral is = 0 since ¢ = 0 on boundary
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rr
T= 2 J J ¢ dA (86)
Arec
Figure 21 shows the cross-section of an orthotropic bar subjected to torsion. It will be

assumed that a/b 10, which will allow r__ to be neglected (Reference 2). Thus the stress
function ¢ will be a function of y only.

1

nze
=

Figure 21, Cross Section of an Orthotropic Bar Subjected to Torsion
Equation 85 will become

'

ot -26,6 (87)

Integrating Equation 87 yields

¢=—zeay. + ¢ v+

Using the condition ¢ = 0 at y = +t/2 we have

¢, =0

2
Gy = zea (_%_—,’)

and
3
$=6,6(+%-y") (88)
T, * :f-—aeuey (89)

Using Equation 86 for toique

"'G;za

i,v ]
te2 [ 6,0(%-y") ey
'.
T
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or

6, = 2L _ (90)

X2 g

Let us now loock ai the case where the crosa-section of a laminate is radially isotropic
(that is, ze - Gyz). This is {llustrated by the case of a unidirectional layup of arbitrary

cross-section as shown in Figure 22,

Figure 22. Unidirectional Composite with Cross Section of Arbitrary Shape

Let the torsional modulus be represented by G, Thns

Guz= Gyz =6

and Equatior 85 becomes

V¢ =-266 (9i)

which is the standard torsional compatibility equstion. Two caseg will now be illustrated using
Equation 91. The first case will bs a cross-section of circular shape with radius R. Using
polar coordinates let

¢ = K(r’-R')

which satisfies the condition thst ¢ = 0 on the boundary. Using this in Equation 91 yields

V¢ = ax=-268

Thus
¢=-=368(r*-r") (92)
¢
Tty - 68r (93)
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¢
T,z‘.' _-é-i-_—- Gef

Using Equation 86
”
T=- eefaf' (r®- R?) rd@ar

=-277 éa.f.(r'—ﬂ')rdr

® 4 e _2\R
z - 2wGO (_!__L_I'.)

4 2 o

Thus
Py
T = wezea

or
27

G 2 —————
wr@Rr*

The second case we will examine is that of a rectangular bar ae shown in Figure 23,

|

|

s 2§
b ~ W -}

Figure 23. Rectangular Cross Section

(94)

(95)

(96)

If ¢ is chosen in this case by multiplying the equations of the boundaries, the compeatibility
condition 'vt2 ¢ = 2Gp cannot be satisfied. So a solution will be attempted in terms of a double

Fourier Series

Let

mz; & sin L't—- x-:ln—"-"—-y
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which eatisfies ¢ = 0 on boundary

-» - _l_ll_!__ ] .”_.'... ul mnw i !1
vie-3 3 -, [(B5)+ (ET]un T e
= ~-266
Using the equation for Fourier cosfficients we have
8Gé Ay d
a .= sln——-x sin = y-drdy
- )|
Performing the integration will yleld
t
a, - 3469: ' (97)
" mart[(2L) 4]
Thus
t T S | T . AW
¢ = M’-—Z Z_ ' sin —==~: sin —~y (98)
x* 0 mE mn[(_@_)"_ n'] v t
. ._ 99 3260:5-'{- Y SV
“yz dy = A5 me [( m) +“] Ot e s Y 99
T, = :? = 326'0' 2 - [( |)’ ] sin ";'3'603-%'—‘ (100)
4 nsym= __n'_.g_ +nt
Then
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Let

Then

Or

Values of K have been found numerically (Reference 2) for ratios of t/w as follows

Gd&#sﬂ“b’b‘
OO OoOMO O

—

T

zbssew;' i 2 |

) »* NSl mT e e [(_q‘:_'_)'+ nt]
. 256 % !

7' o ome mt ot [(%1)“_ “a]

T=KGO wt?

K6 wt®

0.141
0.196
0.229
0.240
0.463
0.281
0.209
0.313
0,333
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